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ON THE ACCURATE LONG-TIME SOLUTION OF THE WAVE 
EQUATION IN EXTERIOR DOMAINS: ASYMPTOTIC EXPANSIONS 

AND CORRECTED BOUNDARY CONDITIONS 

THOMAS HAGSTROM, S. I. HARIHARAN, AND R. C. MACCAMY 

ABSTRACT. We consider the solution of scattering problems for the wave equa- 
tion using approximate boundary conditions at artificial boundaries. These con- 
ditions are explicitly viewed as approximations to an exact boundary condition 
satisfied by the solution on the unbounded domain. We study both the short- 
and long-time behavior of the error. It is proved that, in two space dimensions, 
no local in time, constant-coefficient boundary operator can lead to accurate 
results uniformly in time for the class of problems we consider. A variable- 
coefficient operator is developed which attains better accuracy (uniformly in 
time) than is possible with constant-coefficient approximations. The theory is 
illustrated by numerical examples. We also analyze the proposed boundary 
conditions, using energy methods and leading to asymptotically correct error 
bounds. 

1. INTRODUCTION 

Problems posed on unbounded spatial domains arise naturally in the study 
of wave propagation. The standard approach to the numerical solution of such 
problems is to introduce an artificial boundary and apply 'appropriate' bound- 
ary conditions. A vast literature has appeared in the past 15 years, devoted 
primarily to the derivation of boundary conditions for the wave equation. (See 
[10] for a recent review.) Surprisingly, one finds very little precise error analysis 
in this body of work. Notable exceptions to this are the paper of Halpern and 
Rauch [ 17], where error estimates in terms of the reflection coefficient are given, 
and the early work of Bayliss and Turkel [3], who give estimates based on the 
size of the computational domain. In both cases the error analysis is (generally) 
not uniform in time. In the first case, this is manifested in the requirement that 
the solution not be too smooth, while in the second it is related to the long-time 
breakdown of the progressive wave expansion. 

In this work we consider both the short- and long-time error for finite do- 
main approximations to limiting amplitude problems for the wave equation in 
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exterior domains. By limiting amplitude problems we mean cases where the 
forcing becomes steady or time-periodic as t x-+ o, and one wishes to accu- 
rately compute the solution as it approaches a steady or time-periodic state. (In 
contrast, Engquist and Halpem [7, 8] consider mainly the rate of decay of the 
approximate solution to steady-state and are not interested in accurately repro- 
ducing the transient behavior of the actual solution.) We concentrate on what 
turns out to be the most difficult case: zero frequency (asymptotically steady) 
and two space dimensions. However, we do give some discussion of the other 
problems. 

In ?2 we develop an asymptotic error analysis for general local in time 
constant-coefficient boundary conditions at a circular artificial boundary in two 
space dimensions. (We note that most of the boundary conditions which have 
been proposed fall into the category of local in time with constant coefficients.) 
Conditions are analyzed as approximations to the exact boundary operator, 
which can be conveniently expressed at such boundaries. It is seen that the 
behavior of the exact operator for low frequencies cannot be approximated by 
operators in the class considered. This immediately leads to lower bounds on the 
error of the order I for long times. These are independent of the coefficients 
in the boundary condition and of the size of the computational domain. 

In ? 3 we show how to add variable-coefficient corrections to the boundary con- 
ditions, which allow us to beat the lower bounds derived earlier. We present the 
modified conditions only for the case of a circular artificial boundary, though we 
do make some remarks in the appendix on their extension to general boundaries. 
All rigorous error analyses are given for the case of a circular inner boundary. 
We believe the basic results will hold for an arbitrary star-shaped scatterer, but 
we do not have complete proofs. These results are illustrated by numerical ex- 
periments in ?4. In particular, for a very simple test case, we find that for all of 
the standard conditions tried, the long-time error exceeds 5%. The use of the 
corrected condition results in an order of magnitude improvement. 

Section 5 is devoted to the analysis of the proposed conditions for com- 
putations in the annular region 1 < r < R. Using a somewhat involved se- 
quence of energy estimates, we prove that for long times the error is of the 
order R- 1/2(n R)2(In t)-3. This shows that the error does in fact decay more 
rapidly than the (ln t)-I lower bound of the constant-coefficient case. More- 
over, we show that the major source of error resides in the radially symmet- 
ric component. If this component is subtracted out, then the error becomes 
O((ln R)1/2 Int . t-5/2). Short-time error estimates follow from the arguments 
of [3]. (For an energy analysis of the 'standard' boundary conditions, see Ha- 
Duong and Joly [13].) We note that the method could be extended to improve 
the long-time error estimates by simply using a better approximation to the 
function k defined in the appendix. 

In our work we normalize the wave equation c-2Utt = V2u to have c = 1. 
To obtain the general case, one needs only replace t by ct. It is interesting 
to note that in the electromagnetic problems at moderate frequencies c is very 
large (of the order 109), so that our 'large t' estimates essentially always hold 
and the improvement from (ln t)-I to (ln t)-3 is very significant. 

Some of the results presented here, as well as a more general discussion of 
the error analysis of approximate boundary conditions, can be found in [14]. 
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Some auxiliary computations, including the construction and approximation 
of a special function which plays an important role in the analysis, as well as 
extensions to three dimensions and noncircular boundaries, can be found in 
the appendices. These are included in the supplement section at the end of the 
issue. 

2. ASYMPTOTIC ERROR ANALYSIS 

Preliminary to our study of the long-time behavior of the error which results 
from truncating the domain, we recall the basic theorems on the long-time be- 
havior of solutions in exterior domains (with convex or star-shaped boundaries). 
We consider three distinct cases: the Cauchy problem with compactly supported 
data, asymptotically constant forcing, and asymptotically time-periodic forcing. 
In the first case the solution decays to zero, while in the others (under appropri- 
ate assumptions) it approaches steady or periodic states, the so-called principle 
of limiting amplitude. In three space dimensions, the transient behavior typi- 
cally decays exponentially in time [22, 24]. In two dimensions, in contrast, the 
transient behavior can be quite persistent. In an early paper, Chen [5] quan- 
tified this for a plane pulse incident on a circular cylinder. General theorems 
on the decay of the transients have since been given by Muravei [25], and are 
summarized in Table 1. 

The approximation of exterior problems on bounded domains leads to further 
questions concerning long-time behavior. In particular, 

(i) Does the approximate solution approach a steady (time-periodic) state? 
(ii) What is the error in the final state? 

(iii) What is the transient behavior of the error? 

An affirmative answer to the first question seems a reasonable requirement to 
make on any approximation scheme, and is closely related to the notion of dissi- 
pativity for boundary conditions as introduced by Barry, Bielak, and MacCamy 
[2, 4]. By concentrating on convergence to steady state, it is possible to make 
the final error small or zero by choosing boundary conditions which reduce to 
asymptotic or exact conditions for the Poisson equation. (See [7, 8, 16].) It is 
on the third question that we focus our attention here. In particular, we will 
derive lower bounds of the form int for the error due to domain truncation and 
the imposition of any constant-coefficient, local in time boundary condition for 
a two-dimensional model problem. That is, no approximation of this type can 
accurately simulate the transient behavior associated with convergence to steady 
state on domains of reasonable size. In contrast, problems in three dimensions 
can be accurately solved using such 'standard' boundary operators. 

TABLE 1. Decay of transients in 2d from Muravei [25] 

Boundary Condition Cauchy | f -* fo (x, y) If - fo (x, y) . sin (cot + ) 

Dirichlet or Mixed 0( I) | ( 12) ) 2 

Neumann or Impedance 0 t May not converge 
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2.1. Properties of the exact condition and common approximations. Consider the 
wave equation forced at the surface of a cylinder: 

(2. 1.1i) O2U O2U 
1 au 1 02u 

(1 t2 = 2+rr +r2O2' r> 1, 

(2.1.2) u(r, ,0) =a (r 0, O) =0, 

(2.1.3) u(l, 0, t) =g(o, t) =goO(o) + O 0 ) t ) x. 

From Muravei [25], as t oo , u = uO(r, 0) + 0 ( ), where uOO is the solu- 
tion of Laplace's equation exterior to the cylinder satisfying the inhomogeneous 
Dirichlet condition, uo,(1, 0) = g,,(0). It is convenient to express u using a 
Fourier series in 0 and Laplace transforms in t. Let 

( s) = ef ein0u(r, 6, t)dXdt , 

(2. 1.4) 17 .O 2 
gn(S= (S J e-St j e-ing(6, t)dfdt. 

We then have 
00 

(2.1.5) u = (eine-2(in (r s))) 
n=O 

where 

(2.1.6) Un= ( 2)) gn(S). 

Here, R denotes the real part, Y-1 denotes the inverse Laplace transform, 
and Kn (and later In) are the modified Bessel functions [1]. 

To approximate u by the solution, v, to a problem on a bounded domain, 
introduce an artificial boundary at r = R. A general form for a local in time, 
constant-coefficient boundary condition is 

(2.1.7) =bn (s) 

where bn is a rational function of s with real coefficients. If, in addition, 
locality in space is required, then bn is also constrained to be a real rational 
function of i - n. Note that conditions involving higher-order r-derivatives 
may be put in this form by substituting (s2 - r a@ + 7) for Or. 

We view (2.1.7) as an approximation to the exact boundary condition at 
r=R: 

r2.1.8) -Or = R :bK(R 
(2.1.8) ~~arn (Kn(Rs) ) n _-n (SUn 
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This condition, of course, is nonlocal in space and time. The error, e = u - v, 
is easily expressed in transform space. (See also [14].) It satisfies 

(2.1.9) d 2n + dn n 1 < r< R, 
dr2+r dr r2enO 

(2.1.10) 

en(l) = 0, d r (R) + bn (S) n(R)) (bn (S)-bn() Un(R , s). 

Solving this yields 

(2.1.11) en(r, s) = A(R, s) * [ "()-I()]*gn (S)K(s 

where A(R, s), which is the term we control by our choice of boundary condi- 
tion, is given by 

(2.1.12) A(R, s) = (bn(s)- be(s)) * B(R, s), 

(2.1.13) 

B(R,s)=((bn(s)-be(s))K"((j )-sIn (j s)) I;((R)) 

In order to analyze the approximation properties of bn (s), we need to study 
the behavior of be (s). For short to moderate times, and large domains, we 
consider the limit IRsI Izi >? 1 . Using standard results on the asymptotic 
behavior of modified Bessel functions (e.g., [1]), we find, as z -) 00, 

(2.1.14) 

b()= 1 zKn'(z) - (+1 (4n 2 
- 1) _(4n 2 - 1) 

be(s) =- K ( ) = R (z + 2 + Sz - 8 + O(z 3)) n R Kn (z) R\2 8z 8z2 + / 

This expansion is closely related to Friedlander's progressive wave expansion 
used to construct boundary conditions in [3, 15]. Essentially all boundary con- 
ditions proposed in the literature agree with at least the first term. 

We expect, on the other hand, that the long-time behavior of solutions con- 
verging to steady state will be governed by the behavior of the transform near 
s = 0. (This corresponds to the nonuniformity in time of the progressive wave 
expansion.) The relevant expansion of be is 

( -12) n O 
(2.1.15) ~ be(s) - R1n (-)+2y) + 0(z), =0 

(2.1.15) 
n n + O(Z2), n # 0. 

Matching this expansion introduces more difficulties than matching (2.1.14). If 
we simply insist that bn (0) = be (0), we see that bn must be a function of n 
rather than i* n. This means that the boundary operator must be nonlocal in 0. 
Moreover, we cannot match the I behavior for n = 0 with a rational function 
of s. We shall see below that this fact practically eliminates the possibility 
of accurate long-time simulations using time-local boundary conditions with 
constant coefficients. 
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It is of interest to recast into the present form various boundary conditions 
which have appeared in the literature, and to study them in the large- and small- 
s limits. In a later section we will see how these properties are reflected in their 
performance. One should also keep in mind the concept of dissipativity dis- 
cussed in [2, 4]: a boundary condition for the wave equation is called dissipative 
if it excludes poles in the closed right-half transform plane except at s = 0. We 
would extend this to admit only simple poles at s = 0. These conditions are 
necessary if solutions are to remain bounded as t -- oc. 
Engquist and Majda [6], Bayliss and Turkel [3]: 

(9v (9v v_ 
(2.1.16) At+ =+ =0 

(2.1.17) bn(s) Z+ 2 ' 

(2.1.18) bn-b {2- be O(ln-' ), z 00 
2n- O(ln-1 z), z-*0. 

Bayliss and Turkel (2nd order) [3]: 

(2.1.19) fi(-+ + V2)vIr=R=0, 

(2.1.20) b,(s)= ? (z 
2 

8+) 
R z+ 1 

e O(Z-3), ~ Z-+ 
(2.1.21) bn- bn= 4n2 -8n+3+O(1n1 z) z -0 

8R 

Engquist and Majda (3rd order) [6]: 

(2.1.22) O3V e93V 1 e93V 1 92V 1 02V 0 (2.01 a rt2 + at3 2R2 9 t6 02 + 2 a t2 + 2J?9 02 - 

1 (z3 + I 2 + nZ- n 

(2.1.23) bn(s) = 2 2 2 

(2.1.24) bn-b ={_ (2)' 
Z 

-0 

Engquist and Halpem [7]: 

(2.1.25) at + 
9 

+Kv =0, 

(2.1.26) bn(s) = (z+n), 
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(2.1.27) bn b {O(i 0, 
z 

0(ln- z - z 0. 

(Here, K is simply the Dirichlet-to-Neumann map for the exterior Laplace 
equation.) Higdon [19] has proposed simple product boundary conditions for 
plane boundaries. It is interesting to study their naive generalization to the 
circular case (we emphasize that these are not advocated in [19]): 

(2.1.28) H (cv+)v = 0, 

(2.1.29) bn(s) = (l+C2)Z- 
R (cl + C2)Z - 1 

f(l+c1c2.-c-c2)z + 2-c-c + O(z z 00 
(2.1.30) bn - b e 

Cl+C2 2(c1+c2)) 

-n + O(ln- z), z 0. 

We see that condition (2.1.19) is the most accurate in the large-z limit, while 
(2.1.25) is the least. Condition (2.1.25), on the other hand, is the only one with 
the correct z = 0 limit (and, hence, is nonlocal in space). This corresponds to 
the fact that it was designed for steady-state calculations. It is surprising that 
(2.1.22) matches no more terms in the large-z expansion than (2.1.16). Note, 
however, that it does approximate them in the large-n limit. Condition (2.1.28) 
can be made to match the first two terms for large z by making cl = c2 = 1 . 

Conditions (2.1.22, 2.1.28) are clearly not dissipative. In fact, our expres- 
sion for the Laplace transform of (2.1.28) displays a singularity in the right-half 
transform plane, indicating exponential growth of the solution and, hence, the 
error. (This will be confirmed in the numerical experiments.) The singularity 
in the transform of (2.1.22) is at s = 0. This allows algebraic growth in time. 
For example, it may be verified that tlnr satisfies the wave equation, a ho- 
mogeneous Dirichlet condition at r = 1, as well as (2.1.22). Therefore, these 
boundary conditions are inappropriate for long-time calculations. This conclu- 
sion echoes that of Gustafsson [12], who considered channel-like domains. 

2.2. Long-time asymptotics. All the dissipative conditions above, excepting 
(2.1.25), will not result in the correct steady-state limit. Moreover, no local 
in time constant-coefficient boundary condition can have bo(s) behaving cor- 
rectly near s = 0. By studying the s --+ 0 limit of (2.1.11), we can develop 
candidate asymptotic expansions of the error as t --x 00 for general rational 
approximations. Although the actual behavior of the error can be worse than 
these candidate expansions predict (as with nondissipative conditions), standard 
Tauberian theorems show that it can never be better. 

The small-s behavior of each term in (2.1.1 1) is easily computed. We begin 
with the cases n :# 0, which are simplest: 

(2.2.31) 

(r s)- (rn -r-n)(n - bn(0)) -n_go,n n ) 
Rn(n + bn (0))-R-n(n-bn(0)) 

R S+(1) kRn+ R 
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which suggests, as t -x 00, 

(2.2.32) (2.2.32) (~ 
~(r nl- r-n)(n - bn (O)) -\ 

fg 
n(~ 

) 

en(r, t) = RR(+ b(O)Rn( b()) gon + (t). 

We note that (2.2.32) generally will hold if the solution has a limit. The limit- 
ing value of the error is simply the error in approximating the Poisson equation 
with the boundary conditions defined by bn (0) . It is zero if bn (0) = n . As the 
function in parentheses is bounded by 1 , we have in general that the maximum 
of en (r, oc) is of the size R-n and decays algebraically off the artificial bound- 
ary. Practically, this means that only the small-n harmonics need be correctly 
treated for s = 0. 

For n = 0 we have 

(2.2.33) eo(r, s) = + bo(O) + 1 n I+y)lnr g- ? + (1). 
1+bo(O)lIn R I 

This is consistent with the t -k 00 expansion 

(2.2.34) e0(r, t) = +bo(O)lnR + (2eiyt))lnr.gc,,0+o(t1), 

where, (T) is a function whose Laplace transform behaves like (s lns) 
- as 

s -+ 0, O((slns)-1) as s -x 00 and has no other singularities in the closed 
right half-plane. It is given by 

(2.2.35) () e ( du) dp. 

Its asymptotic behavior is 

y 
(2.2.36) lnT (lnT)2 

- ln (rev) + 0((lnT)-3), T -x o. 

(The construction of * and its asymptotic expansion are given in Appendix 
A.) 

Note the very slow decay of this error with R, r, and t. In particular, it 
may not be detected by varying R, for R large. Also note that the second term 
in the expansion is independent of the boundary condition. Therefore, it will be 
present for any dissipative condition, and hence provides a lower bound on the 
attainable long-time accuracy for local in time, constant-coefficient operators. 
This fact follows from 

Theorem 1. Let e = u - v be the error resulting from domain truncation with 
the boundary condition (2.1.7) and let eo(r, t) = 1 Jf e(r, 6, t)dO. Suppose 
lim-,00 eo(r, t) exists. Then 

(2.2.37) lim sup ln t I Ieo(r, t) - eo(r, 0) I ? ln r * Igoo, 
t -oo 
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Proof. The proof follows from the Hardy-Littlewood-Karamata Theorem [28, 
?7.1, Theorem 3]. First of all, by the Abelian theorems for Laplace transforms 
(e.g., [29, ?5.1]), 

(2.2.38) eo(r, o)= (+b(OlnR) lnr - gO,,o. 

Let w(r, t) = ?(eo(r, oo) - eo(r, t)) . Then wri(r, s) is given by ? the second 
term in (2.2.33) as s -* 0. Suppose (2.2.37) is false. Then for some K > 0, 
W _ w + K is eventually positive. Moreover, 

(2.2.39) w (r, s) - lnr* g,o +s K 0 

The Hardy-Littlewood-Karamata Theorem then implies 

(2.2.40) Jt 
t 

(r,p)dp - Inr. g,o ol +K, t-* 00, 
to 

which implies 

(2.2.41) l t t 
w(r, p)dp ln r * IgoI, o 

This contradicts the supposition that (2.2.37) does not hold, completing the 
proof. o 

Again, the obstacle to proving that (2.2.34) holds in general is the possibility 
of worse behavior, for example nondecaying oscillations or even growth of the 
error. We will see in the numerical experiments that (2.2.34) does accurately 
predict the behavior of the error for most of the conditions listed above. 

It is worthwhile to consider the sensitivity of these results to the details of 
the model problem. The choice of a cylindrical scatterer is of no particular 
importance-one can study the solution for more general shapes using integral 
equation techniques. Of course, if there are trapped rays leading to slower 
decay rates for the transient solution, we may expect even slower decay of the 
error. Many authors use rectangular artificial boundaries and formulate their 
conditions in a way that is boundary dependent. This can have some effect 
on the behavior of the conditions. For example, condition (2.1.28) then leads 
to algebraic rather than exponential growth. However, the basic conclusion 
concerning the slow decay of the error for local in time, constant-coefficient 
conditions remains valid. More details can be found in Appendix B. 

3. CONSTRUCTION OF IMPROVED CONDITIONS 

In this section we construct variable-coefficient boundary conditions which 
have better long-time behavior than can be attained by constant-coefficient op- 
erators and, in addition, match a number of terms in the progressive wave (far- 
field) expansion. This guarantees their accuracy for short to moderate times. 
The subsequent numerical experiments clearly demonstrate their efficiency. 

We assume a circular artificial boundary, r = R, and construct conditions 
for each Fourier mode. This will result in a spatially nonlocal operator, as is 
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required if convergence to'the correct steady state is to occur. We will also 
construct simplified approximations which allow small errors in the final state. 

Let v = R(E' % v,(r, t)ein0). For v, we impose a boundary condition of 
the form 

(3.0.42) 
OV 2 +OVn ( v 

Xn Vn-(3 ++6n (t)) r+ t2 + (R n(t) t + n(t)Gn(t)Vn 

=0. 

To determine 3n and Gn, we consider separately the geometrical optics and 
long-time limits. The expansion (2.1.14) corresponds to the relationships 

(3.0.43) at2Un O 2Un + + aun + 
4n 

RI u = O(R-3Un) 

(3.0.44) - + n n = O(RuUn)1 O r a Aun=O(Run)u 

Comparing these with (3.0.42) leads immediately to the condition 

(3.0.45) 6n= Gn- 2j 8R2 

with the formal result 

(3.0.46) 5YnUn = O((R-3 + &R-2)Un ) 

(This will become O(R-3un) as An will scale like R-' .) 
To choose Gn, we consider the long-time near steady-state behavior. For 

(3.0.42) we have 

(3.0.47) + Gn(t)vn 0, Or 

whereas (2.1.15) implies 

(3.0.48) ufn ln =(t-) n 0, 

Ou00+ft/)a(t -p)uo(R p)dp= o(tU) 

where '(s) = -(R(ln (Rs) + y))-l + O(s2). Equation (3.0.48) may be approxi- 
mated using a constant Gn 

(3.0.50) G - an = (2 _ ), n : 0. R' 4R n0 

Equation (3.0.49), on the other hand, cannot be well approximated by (3.0.42) 
with constant Go. (This is, of course, the content of Theorem 1.) However, as 
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uo(R, t) -uo(R, oo), we have io = Iuo(R, oo)(l + o(l)), so that 

uo(R,c oc) 
(3.0.51) *uo = - (1((y ) *(I + )). 

Therefore, if we choose a decaying function Go(t) so that 
A ~~~~~1 

(3.0.52) = -Rs(ln() + ( + (l)) 

then Gouo will agree with ' * uo to leading order for small s. We have already 
constructed a function with such behavor, X. We avoid using X directly, as 
we have no fast means of evaluating it, but instead use its asymptotic expansion. 
That is, we take 

(3.0.53) Go(t) IX (t = R + O((lnt)-3). 

(Note we have absorbed into one term the first two terms in the expansion 
of X in inverse powers of the log of its argument. This order of agreement 
determines the form of our final error estimate. A more accurate approximation 
would produce a more rapid asymptotic error decay.) Keeping in mind that 
Go - (2R)-1 $ 0 must be enforced, we finally have 

(3.0.54) Go(t) = I - c=2(t + D) D> Re2 
RInC' R 2 

(3.0.55) d0(t) = 41? 1 - 2(ln4)-1 

(Here, D is a free parameter. In the experiments it is taken to be 4.5R.) 
Putting this all together we have our final form: 

Uniform asymptotic boundary condition. 

(3.056) (2+ 07' (Ot O v- 1 - - v =0 
(3 09t))J krt+ a t + 2RJ 2R2 0-2 8R2 

where the nonlocal (in 0) time-dependent operator 0 is defined by 
00\ 

(3.0.57) ww(6, t) = ( E n (t)wn (t)ee 9) 
n=O 

with 
00\ 

(3.0.58) w(6, t) = Ewn9(t)en) 
n=O 

and Jn is defined by (3.0.50) or (3.0.55). 
The main complication in using this condition, in comparison with other 

second-order operators, is the application of the nonlocal operator ?. Of 
course, this can be done using fast Fourier transforms, so that actual computa- 
tional work is negligible. (See also Keller and Givoli [21 ] for the implementation 
of nonlocal conditions.) According to our analysis of the steady-state error for 
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dissipative conditions (2.2.32), the accurate approximation of be(0) is only 
important for small n. This may be used to simplify ?. A first (local) ap- 
proximation is to replace 0 by 60. The dominant part of the steady-state 
error will then correspond to n = 1, have a maximum of O(R-1) and decay 
like L. The first two terms may be incorporated in an operator _1r 

(3.0.59) 
1 72 

4w(6, t)=50(t)w(t)+?1(w( ,t)- w(t)), W(t) = 2 w j w(6, t)dO. 

Here we expect a maximum error of O(R-2) decaying like (L)2. Of course, 
this approach can be generalized to an arbitrary finite number of modes. We 
emphasize, however, that there are no substantial savings in computational work 
for circular boundaries, though there may be in the general case. 

In ?5 we prove the well-posedness of the resulting initial-boundary value prob- 
lem using energy estimates, and also prove that the transient error decays faster, 
O((ln t)-3), than the lower bound established above for constant-coefficient op- 
erators. A similar construction for three-dimensional exterior problems is given 
in Appendix C. 

4. NUMERICAL EXPERIMENTS 

We have carried out a number of simple numerical experiments to test and 
illustrate the results derived in the preceding sections. These are necessary, as 
our long-time analysis is asymptotic and does not provide precise error bounds. 
We solved individually problems for various Fourier coefficients: 

n2v~ 1 a av n2~ 
(4.0.60) a =- = yr Or) I <r<R, 

(4.0.61) vn(r,0 ) = i9Vt(r, 0) =l0, Vn(l t) = 9(t) 

In most of the experiments we have taken, for some co, 

(4.0.62) g(t) = I _ cos 2rtt 
l+t2 

All simulations were carried out to t = 500, which was 50000 time steps. A 
standard second-order, centered finite difference discretization was employed 
with a uniform spatial mesh and I = .5. As we have a reasonably large num- 
ber of points per wavelength (between 100 and 12 for the shortest waves), 
we are confident that the discretization errors are negligible in comparison with 
those due to the boundary conditions, particularly for long times, when the so- 
lution is very smooth. The boundary conditions used in the comparisons are 
(2.1.16), (2.1.19), (2.1.25), and (3.0.42). We also display a single simulation 
using (2.1.28) to illustrate the blow-up of the solution as t -+ xc. For refer- 
ence we list in Appendix D the differencing used for each of these, all formulas 
being accurate to second order. For most of the results shown we have taken 
R = 8. Note the we have carried out a large number of experiments, using other 
boundary conditions and varying R and other parameters. What we present 
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(2.1.16) 
(2.1.19) 

-- (2.1.25) 

0.1 0 
/ -(3.0.42) 

0 / 

iXj - 

0.05 l 

0.00 
0.0 100.0 200.0 300.0 400.0 500.0 

Time 

FIGURE 1. Errors for n =O, c 1, R= 8 

(2.1.16) 
--- (2.1.19) 
- (2.1.25) 

0.1 0 - 
(3.0.42) 

2 

0.05 -- 0.05 L / ~~~- - - - - - - - 

0.00 1 

0.0 100.0 200.0 300.0 400.0 500.0 
Time 

FIGURE 2. Errors for n = 0, co = 4, R = 8 

is both qualitatively and quantitatively representative of what was generally 
observed. 

The advantage of solving the modal equations is the opportunity it provides 
for very long-time and (for comparison) very large-domain simulations at low 
computational cost. In particular, we have solved the difference equations with 
R = 252 and the same uniform mesh ( 12551 points). The error due to the 
boundary condition is approximated by comparing these solutions every 20 
time steps at the point r = 1.8. We also checked the errors at a number of other 
stations, with essentially the same results. Of course, the errors we compute for 
each mode may be superposed to give the errors for a full simulation. 

Figures 1-3 display the errors for n = 0, which is the most difficult case. 
The behavior of the error for short times is clearly consistent with the degree 
to which the expansion (2.1.14) is matched by the boundary condition. That is, 
(2.1.19) is best followed by (3.0.42), (2.1.16), and (2.1.25). These differences 
are somewhat accentuated as the frequency, w, is made larger. The long- 
time error for all the constant-coefficient conditions is seen to be fairly large, 
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(2.1.16) 
(2.1.19) 

-- (2.1.25) 
0.10 (3.0.42) 

0.1 --------- 
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0.00 
0.0 100.0 200.0 300.0 400.0 500.0 

Time 

FIGURE 3. Errors for n =O, co= R= 8 2' 
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0.06 // ~~~~~~~~~(2.1.19) 0.06 /--0(2.1.25) 
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- 0.04 /-- 
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FIGURE 4. Errors for n = 0, C = 1, R = 16 
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True 

o ---- Asymptotic 
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FIGURE 5. Asymptotic expansion vs. true error, condition (2.1.25) 
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0.10 True 
------Asymptotic 

o 

0.00 I 
100.0 200.0 300.0 400.0 500.0 

Time 

FIGURE 6. Asymptotic expansion vs. true error, condition (2.1.16) 

0.1 s- Tre 

0---- Asymptotic 

0.00 . I I I I 
100.0 200.0 300.0 400.0 500.0 

Time 

FIGURE 7. Asymptotic expansion vs. true error, condition (2.1.19) 

ranging from 4% to 8% at t = 500. (Note that the error from (2.1.25) is still 
largest, though its limiting value is 0.) The error resulting from the corrected 
conditions, (3.0.42), is smaller than .4%, an improvement of more than a factor 
of 10. The insensitivity of these results to boundary location is illustrated by 
Figure 4, where we have doubled the domain radius. 

A comparsion of the numerically computed error and the asymptotic expan- 
sion of the error (2.2.34) is presented in Figures 5-7. Plotted are the errors 
from Figure 1 versus 

(4.0.63) 1+ bo(n) R 12)lnr 

Here, bo(0) is taken from the formulas in ?2, R = 8, r = 1.8. The expression 
above is expected to be correct to O((ln t)-3). We see that the candidate expan- 
sion does, in fact, correctly predict the behavior of the error for these particular 
boundary conditions. (Recall that in ?2 we only prove that the error cannot 
decay faster.) 
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FIGURE 8. Errors for n = 1, I = 1, R = 8 
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FIGURE 9. Errors for n =2, w = 1, R= 8 
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FIGURE 10. Errors for n = 0, g = sin 2rt, R = 8 
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1.0e+07 I , I , 

O.Oe+00 

0 
g -1.Oe+07 

C,) 

-2.0e+07 

-3.0e+07 
0.0 100.0 200.0 300.0 400.0 500.0 

Time 

FIGURE 1 1. Solution at r = 1.8 using (2.1.28), n = 0, c = 1, 
R = 8 

Errors for n :# 0, in contrast, are much smaller and more rapidly decaying. 
This is illustrated in Figures 8-9, corresponding to n = 1, 2. Again, the overall 
performance of (3.0.42) is best. 

We have also carried out simulations for a periodic forcing, g = sin 27rt. 
The results are shown in Figure 10. Here, the decay of the transients and the 
transient part of the error is more rapid. In this case we find that condition 
(2.1.19) is most accurate, corresponding to the nearly invisible curve at the 
bottom of the figure. It is followed by (3.0.42) and (2.1.16), which give nearly 
identical results. Again, we emphasize that the absolute size of the errors is 
small compared with the earlier experiments. 

In our final example, Figure 11, we trace the solution at a particular point 
computed with the nondissipative condition, (2.1.28). We find, as expected, 
that the solution eventually grows exponentially in time, rendering the results 
meaningless. 

5. ENERGY ESTIMATES AND ERROR DECAY FOR 

VARIABLE-COEFFICIENT CONDITIONS 

In this section we derive energy estimates for our proposed boundary con- 
ditions. First of all, these imply the well-posedness of the resulting initial- 
boundary value problem. Secondly, we use them to prove that our condition 
is dissipative, that is, that the solution approaches the correct steady state, and 
that the long-time behavior of the error is better than can be obtained with 
constant-coefficient operators (see Theorem 1). The proof is somewhat com- 
plex, relying on different techniques for the variable- and constant-coefficient 
parts of the boundary condition. To facilitate the decomposition of the error 
into 0-independent and 0-dependent pieces, we only consider the case of a 
circular scatterer. 

We seek to approximate the solution, u, to 

(5.0.64) 0t = V2U + f 
at2 =Vuf 
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exterior to a disk, Q, of radius 1 . We also have initial and boundary conditions 
(using the usual polar coordinates r and 0 with origin at the disk center): 

O u 
(5.0.65) u = g, r = 1, u(x , 0) =wo(), W (x 0) = wI(). 

We further suppose that f, wi have compact support, that f, g approach 
limits as t -x Xo sufficiently fast and that all the data is smooth. 

Introducing a circular artificial boundary at r = R such that the support of 
the data is contained within the truncated domain, we approximate u by v, 
where v satisfies the wave equation with the same data as u and, in addition, 
(3.0.56) at r = R. The error, e = u - v, then satisfies 

(5.0.66) t V2e, e(x, 0) = % 0)= 0, Ti 

(5.0.67) e = 0, r= 1, Be =Bu-uT(6, t), r=R, 

where we denote by B the operator in (3.0.56) and T is the annulus given 
by 1 < r < R. We decompose e into two orthogonal parts, both of which 
satisfy the homogeneous wave equation with zero data away from the artificial 
boundary: 

(5.0.68) e(r, 0, t) = eo(r, t) + e(r, 0, t), 

where eo(r, t) = (1/27r) f27 e(r, 0, t)dO. The boundary conditions satisfied by 
eo and e are 

(5.0.69) 

- +9 0(t ) ( 9+ + eo) - ___ = Po(t) -T2jP(6 t)d6 

a0t ) 
aOr 

at 2R 2R2 

062 

8R2 
(5.0.70) ='P(6, t) 

-T(0 t) - TO(O , t). 

Here, the constant-coefficient nonlocal operator _ is given by the sum in 
(3.0.57) excluding the n = 0 term. 

The estimates for eo and e will be made separately, using quite different 
arguments. We note that both energy estimates could be made with a general 
star-shaped scatterer, but we would be unable to make the simple decomposi- 
tion of the error into its Fourier modes. We expect that eo will represent the 
dominant error for long times, and so we will consider it first. 



LONG-TIME SOLUTION OF THE WAVE EQUATION 525 

5.1. Estimates for eO. We employ a one-parameter family of energies adapted 
from Muravei [26]: 

R ~~2 2 

&'(t; K)-I [(2 +r2) aeo) + clj ) 

(5.1.71)/ 

+4tr + 2teo?- eo rdr, 

where t = t + K and K is eventually to be chosen sufficiently large. Differen- 
tiating o' with respect to t, using the equation satisfied by eo, integrating by 
parts, and applying the boundary condition at aQ, we obtain the fundamental 
identity 

(5.1.72) 

g=R [(t-2 + R2 8eo OeO + Rf-((8aeO)2 + (Oeo)2) +eoOea ?] [-(,eo)2 jr=1 

-R [i2aetae + Rt( Ae + aeo)) + Te0aeo] R-(eo )2jr=1 8t Or a t Or/ Or]r= ar 

We have introduced t = t-- R. 
We must now use our boundary condition at r = R to estimate the energy 

derivative. As a preliminary step, we first rewrite the boundary condition in 
integral form by inverting the differential operator (,Qt + 30(t)) 

(5.1.73) aeO + eo+ e - 2 je-ft(1)dq1eo(R, r)dT = To(t) 

and performing an integration by parts: 

(5.1.74) aet + + q(t)eo+ 8R2 Z(t1 T) ( T (R, T)dT =o(t). 

Here we have introduced 

(5.1.75) Z(t, T) = fefso(n)dnds, q(t) =2R (1- 4RZ(t, t)), 

as well as the modified data, 

(5.1.76) TOI(t) = Je- fs6o()dn1To(s)ds. 

It is convenient to state and prove here certain facts about q which will be 
useful later on: 

Lemma 1. There holds 

(5.1.77) q(t) ?:0, q'(t) <O, q = 0(1/(Rln(t/R))), t -xoo, 
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uniformly in R, and, for any c > 0, K = K(E)R2 can be chosen sufficiently 
large such that 

(5.1.78) (t + K - R)q'(t) + 2q(t) + < 
t+K-R - RInR' 

Proof We recall that 30(t) is given by (3.0.55) and satisfies 

(5.1.79) 

(501(t) >1 4R (t) < ? ao(t) I + 0(1/ln(t/R))), t x. 

This implies 

(5.1.80) Z(t, t) < 1e-0(t*-s)ds = 0t (1 - e-0(t)t) < 4R, 

which immediately yields q > 0. Differentiating q and using (5.1.80), we 
obtain 

(5.1.81) q' -8R2dt(, t) = 8R2(I -0(t)Z(t , t)) < 0. 

Now, integrating by parts, we get 

(5.1.82) 

Z(t t) 1 + e36(t)[A(56(s) - Ie o@ )dIds + 0 e- 
5 (t) , + (t)Jo 03 (S)! 

The first term on the right-hand side is 4R(1 + O(1/ln(t/R))) as t -x , and 

the second is O(R/((t/R) In2 (t/R))) . Putting this into the formula for q yields 
q = 0(l /(R ln (t/R))) . 

Finally, we consider the terms on the left-hand side of (5.1.78). Using the 

expansion for Z and introducing i = (t + D)/R and K = O(K/R), R -x 00, 

we obtain, for some positive constants Yi, Y2 independent of R and K, 

(5.1.83) 2q < Yi 
- lni' 

(5.1.84) (t + K - R)q' < -Y2(l + (K/t)) 2 

(Here we use the fact that D = O(R).) Combining these and taking X = 
O(R) sufficiently large, we see that (t + K - R)q' + 2q is negative until t = 

O(K/ In K) . Its maximum, then, is O(1 /(R InK)) = 0(1 /(R ln R)), and can be 
made arbitrarily small by choosing K/(R2) sufficiently large. Since the maxi- 
mum of the remaining term behaves like 1/K, the estimate holds. This com- 
pletes the proof of Lemma 1. o 

Solving for %e? in (5.1.73, 5.1.74), substituting in (5.1.72), and integrating 
in time from 0 to T, we obtain 



LONG-TIME SOLUTION OF THE WAVE EQUATION 527 

(5. 1.85) 

(T)+j (e0e)Or dt+e o2(Oe0o dt 

=-2 | IT + dt ( e2)) dt- (tq(t)f dt 

r=R r=R 

+ J tR ( *u0) dt 
at~~d 

1 T '0o ).(t )OeoRr) 
- A]t^ (>0 (R, t) * Z(t, T) O (R, T)dT dt 

+ R2 j t (o(t) - Aeo(R, t) + 8R2 j e- f t60()dqeo(R, s)ds) dt 

? 
8R J eO(R, T) *(f e- fS'6o(t1)d?jeo(R s)dsj\ dt 

T 

+ J fReo(R , t) * To(t)dt. 

Our strategy from this point on is simple. We will show that the terms on 
the right-hand side of (5.1.85) involving %e are, in aggregate, negative, and 
we will use 9' to estimate the terms involving eo. Throughout, c and G will 
stand for constants independent of t, R, eO and '0 such that c can be made 
arbitrarily small (typically at the cost of making K and G large). The basic 
estimates are presented in a sequence of lemmas. 

Lemma 2. We have 

- (P2q(t) + i)R (0()(R , t)) dt 

< -!(T2q(T) + T)Reo2(R, T) + RlnR jiReo2(R, t)dt. 

Proof. Simply integrate by parts and apply the second part of Lemma 1, choos- 
ing K sufficiently large. o 

Lemma 3. We have 

(5.1i. 8 j7) t2R t(R, t)( Z(t T) (R, T)dT)) dt > o 

Proof. Let 

(5.1.88) w(t) = t20(R, t) Z(t 1 T) = -2Z(t T). 

It is sufficient to show that 

(5.1.89) w(t) Z(t, T)w(T)dTdt > 0, 
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for all functions w. By a result from the theory of Volterra equations (see 
Gripenberg, Londen, and Staffans [11, ?20.2, Theorem 2.2]), it is sufficient to 
show that, for t > T > 0, 

(5.1.90) 2>0 o t <? a 2 > 0 <? 
at aT9z ' dltdzT_~ 

Recall that Z = (T + K - R)-2 f ef'bo(??)d?lds. Clearly 2 > 0 for K > R. 
Differentiating and recalling that 50 > 0, we obtain 

(5.1.91) a2 = -30(t)Z < 0, at 

(5.1.92) 022} = - doZt) a 

We need only show, then, that the T-derivative of Z is nonnegative. We have, 
using (5.1.80) 

a2 .3f'0nd (5.1.93) aZ = T-3e -a(?)d?(T+K-R-2Z(T, T)) 

> i3e JU d?i(T + K - 9R), 

which will be nonnegative for K > 9R, completing the proof. o 

Lemma 4. We have 

(5.1.94) 

R a(R, t) e Ro(t)d t 

< ln (Re0 T) + ie02(R, t)dt) 

+ GR2InR (T202(T) +j tiP2(t)dt+ t (t)) dt) 

Proof. Integration by parts in t yields that the left-hand side of the expression 
above is equal to 

_ ~~T 
R T eo(R, T)TPo(T) - 2 .;t^eO(R,9 t)To (t)d t 

(5.1.95) T 
- fT t^2 (R \t) (t)dt 

The final result follows from the elementary product inequality 

ab<Ea2+l.+b2 o 
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Lemma 5. We have 

| R (|e- s (1d'e(R ,s)ds) dt 
(5.1.96) ( e 

< 16R3 (I + n R) JTeo(R, t)dt. 

Proof. We have, for s < t, 

(5.1.97) (t + K) < (s + K) (t -s+ K) e- fso()d <e-d< 

Therefore, the quantity to be estimated is bounded above by 

(5.1.98) R T(_*(s+ K)'Ieo(R,s)I) dt, 

where s(s) = (s + K) e- 
' 

and * denotes convolution in the time variable. 
By standard estimates for convolutions [11, ?2.2, Theorem 2.2] this is bounded 
above by 

(5.1.99) K (l jE(s)ds) jTie02(R, t)dt. 

Integrating by parts gives 

1(s +K)'e- ds = -4Re- R((s +K) + 2R(s + K)-) IT 
o~~~~~~~~~~~~~~~~~~~ 

(5.1.100) -4R2 jT(s + K) -e -A 

< 4RK (I + K 

Substituting this into the previous expression and choosing K = O(R ln R) 
sufficiently large yields the desired result. o 

Lemma 6. We have 

(5.1.101) 

?Reo(R, t) * 'o(t)dt + 8R j teo(R, t)* (f e- fs'6o(q)d'eO(R, s)ds) dt 

+ R2j t (o(t) - 2-eo(R, t) + 8R2 Jte- Jfsto(?1)d?1eo(R, s)ds) dt 

< (2 + lnR ) ; teO(R, t)dt + GR2 ln R j tiO(t)d t. 
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Proof. The terms involving '0 may all be estimated using the product inequal- 
ity and Lemma 5. Expanding the remaining terms yields 

(5.1.102) 

- J eo2(R, t)dt + 64R2 1 t e- f,' ?5(0)dle0(R s)ds) dt. 

The final estimate is then a direct consequence of Lemma 5. o 

Putting all these inequalities into (5.1.85), we finally obtain 

Theorem 2. For any e > 0 and K = O(R2) sufficiently large, there exists a 
constant G independent of T, R, and TIo such that 

(5.1.103) 

9't(T)?(l t)) dt + 12R -at0-(R St)) d t 

< e T2 e2(R, T) + |Te02(R . t)dt) 
-nR o 

+ GR2 InR (T24G2(T) + 1;t'Fg(t)dt + t3 (atP (t)) dt) 

We now use this energy inequality to finally estimate eo in terms of 'P0. 
For economy of expression we introduce '(T; 'P0) to denote the terms in 
parentheses on the last line of (5.1.103). The first step is to prove a Poincar& 
type inequality relating eo at R to 8. 
Lemma 7. For K = O(R ln R) sufficiently large, there exists a constant L inde- 
pendent of R, T, and eO such that 

(5.1.104) !2eo2(r, t) < Llnr.'(t; K), 1 <r <R. 

Proof. We begin by estimating eo in terms of fr O()2. We have 

~5ll05' 2~R t'- 20e0 
(51.105) eQ2(R, t [jRi,9(r, t)drj]2 <InR 1Ro(ra t)) rdr. 

By the same techniques we find that 

(5.1.106) jRerdr< 2 nJ (f rd) 

Combining this with the elementary inequalities 

(5.1.107) I4rrI < 2rt ) (9)2) 

12 TeoaO2I? < 4eJ2+ t) 
yields 



LONG-TIME SOLUTION OF THE WAVE EQUATION 531 

(5.1.108) 
R ~~~2 2Oo\~ 2n ( 2] 

> > 2f/ [(- r)2 (( v ) + 
o 
R?) 2 rnR 

aeo rdr. 

Choosing K = O(R In R) sufficiently large keeps (t - r)2 > MR2In R for any 
M so that for some constant L independent of R and T we have 

(5.1.109) 12 
-5 r-O rdr< L -8(t; K). 

Substituting this into (5.1.105) yields the desired result for r = R. The exten- 
sion to r < R follows directly since the integrals used to bound the left-hand 
side all had nonnegative integrands. o 

Remark. The calculation used in Lemma 7 shows that, for K sufficiently large, 

the quantities f r (ae, (r, t)) dr, J'Rr (%e (r, t)) dr and Ieo(r, t)l are all 

bounded by 8(T, K) * T 
We are now able to estimate 8 directly in terms of 'Po: 

Theorem 3. For any e > 0 we can choose K = K(E)R2 sufficiently large such 
that 

fTd~ 
(5.1.110) 8(T; K) < G(e)RlnR - Tf J 

- 
7(t; TPo)dt. 

Proof. Making e in (5.1.103) small and using Lemma 7 to estimate eo, we 
obtain 

(5. 1.111) 8'(T; K) < ej - 8(t; K)dt + G(e)RlnR * (T; TO). 

The final result follows from an application of Gronwall's inequality. 0 

5.2. Estimates for e. As the boundary condition for e has constant coefficients 
in time and the angular variable, we consider its Laplace transform in t and 
Fourier transform in 0, en . Introducing differential operators 

(5.2.112) 
a 2 1 n2 

~ ~ 1 Ln-- + - ,-2 -s2 D- + s + 2 -D* +2' 
~Or2rOr 0r2 DOcr+52rD2r~ 

(4n2 - 1) 
Cn 8R2(s+3bn) 

we have the problems ( n = 1, .. ., oo): 

Problem 1. 
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Our error estimates follow in three steps. We first note that the well-posedness 
of the problem for e, follows from general principles (e.g. [27, ?3.3]). This 
implies the solution may be represented by its Laplace transform for Rs suf- 
ficiently large. Second, as the solution of a problem with analytic coefficients 
(with s in the closed right half-plane) eLn must be a meromorphic function 
of s if Tn is. We will first prove that there are no poles in the closed right 
half-plane, which by the preceding comment implies that e'n is analytic. We 
then push the inversion contour to the imaginary s-axis, where we estimate the 
transform in terms of 'n. Finally, Plancherel's Theorem is used to give the 
final estimate. 

To make the argument completely rigorous, one needs estimates for large IsI 
in the right half-plane. Estimates of this type have been developed, for example, 
in [23]. We, however, have not carried out the details for our case. 

Theorem 4. For FRs > 0 there are no nontrivial solutions of Problem 1 with 
Tn =0. 
Proof Suppose q is a solution of Problem 1 with zero data. Let s = 4 + ill, 

> > 0. Multiplying the equation by cq and integrating from 1 to R yields 

In ]r -d + S2 rIqI2dr 

+ n2 -Iqi2dr + R(s + Cn(s))Iq(R)12 = O. 

We first note that 

(5.2.116) R(s+ Cn(s))= + 8R2 *+ _ 

_n)2_+_2 >?' 

since 3n > 0. Therefore, 

(5.2.117) 0= RIn > (W2 - + j2) jrIqI2dr, 

which implies 

(5.2.118) 2 > <2 + R 

Looking now at the imaginary part, 
R 

(5.2.119) !Hn = 24?zj rIqI2dr + R * a(s + Cn)lq(R)12, 

we conclude that 

(5.2.120) (s + C,,) < 0. 

Writing this out and using (5.2.118), we reach a contradiction: 

(5.2.121) I?s+~ 1 4n2- 1> 1 
(21) + =- R2 (+ a5)2 + t2 - 8 2 

This completes the proof. o 
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We now restrict attention to the imaginary s-axis, where we have the identity 
due to Morawetz and Ludwig [23]: 

2J (rDw * Lw) = V. (2R (rDwVw) - (s2IW12 + VW 2) X) 
(5.2.122) (1VW12 _w 

2) 
- 1D*w 2. 

Integrating this (with w = e) and using the definition of D and the boundary 
condition at r = 1, we obtain 

1R ([ID +e reni ) rdr 

( / __ ~~~~2\ 2\ R 

(22 = (2 (rDean) -e r 2 
n 

) 1i2 + 
a 

e|n (5.2.123) = Or / Ore 

2 12 1+ 4n2 12\1 - Oen 2 
=R2 (|Den 4R2 leni) R OR r 

We now use the boundary condition to estimate the boundary term at r = R. 
We have the inequality 

(5.2.124) Cnl < ?2RI 

which implies, for any ,u > 0, 

(1 4n2- 4n + 2 
(5.2.125) De'l2 n +- ) 4R2 + en +(l +(4/y))'2P. 

We can use this inequality to estimate the boundary terms in (5.2.123), which 
leads to the following lemma. 

Lemma 8. At r = R we have 

1D 2 1 + 4n 2 3 1< 12 (5.2.126) ([De- 4R "en 2)+ en2 ? 5ni'Pn2. 

Proof. The lemma is a direct consequence of (5.2.125) with ,u = , . o 

Substituting into (5.2.123) and applying Plancherel's Theorem, we have 

Lemma 9. For any T > 0 there holds 

T Rn2 
n 2 O en Oen 

2 

101A A (2 Or + |) rdrdt + 3 I en(R)12dt 

< SR2nj IInI2dt. 

Noting that e has zero average in 0, we see that Lemma 9 yields a bound 
on IIe II. (Here, II * II denotes the L2 norm on T .) However, it cannot be used 
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directly to get a pointwise bound. For that, we go back to the standard energy 
equality (again taking account of the zero Dirichlet data at r = 1): 

l e r + 2+ rdr 

(5.2.128) e 

=R e R e(R t) n(R, t)dt). 
Jo Or a t ' 

The untransformed boundary condition is 

(5.2.129) en - Oen + Fn(t), 
Or Ot 

where 

(5.2.130) 

n (t) =2R en(R, t) - 8R2 e -n(t-P)en (R, p)dp + n (t). 

We first estimate the energy in terms of Fn by substituting the boundary con- 
dition into (5.2.128), applying the elementary product inequality: 

IfR ( Oe 2 Oen2 n2 2 ~ RfT Oe~ 2 
( I niO + +R2IenI ) rdr+ 2 nt| dt 

-2 Or at r a 

We now estimate Fn, using standard estimates for convolutions: 

(5.2.132) 
IT 

IFn 12dt 

/I,T (42_12T ~t 2 

? 3 (4R] le 12dt+ (4R4 -1) ]e-6n(t-P)en(R, p)dp dt 

+ I vn 12dt) 

*3n2 Xlen 12 dt + IJ 1n2 dt. 

Combining these leads to an estimate which does not involve the solution at 
the boundary. We introduce the fractional Sobolev norm at the boundary, 

IIW113/2,R (RE' , n3lwnI2)l/, and let 11 * 1I denote the L2 norm in T. 

Theorem 5. For smooth errors e, any T > 0, and an 0(1) constant M, we 
have the estimate 
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2 2 2 

T) + ||e(T) + --(. T) 

(5.2.133) + R| -a,(R, t)) dt+ - 1o || 2e t) dt rl ~ ~ ~ 0 

< m JITl(t) l3/2, Rdt. 

Proof. We begin by multiplying the inequality in Lemma 9 by 4R? and adding 
the result to (5.2.131). Then, applying (5.2.132), we deduce 

R e,2 + en2 r 2le 1rdr + R Tj e dt 
Or at r2 e2 at 

(5.2.134) + J J 1T1Rn2lenI2rdrdt + X1 len (R)I2dt 

< 32 XT en (R)12 dt + MRn3 | lnl 1dt- 
R 

1 

Subtracting the term involving en (R) from both sides and applying Plancherel's 
Theorem yields the desired result. o 

We can now estimate the pointwise error using a Poincare inequality: 

Theorem 6. There holds 

(5.2.135) e2(r, 0, T) < Mlnrj |IT(t)I3I/2,Rdt. 

Proof. Combining (5.1.105) (with R replaced by r) with the preceding theorem 
immediately yields the desired result. o 

5.3. Asymptotics of P and e. We now use asymptotic expansions of the solu- 
tion of the wave equation in combination with the energy estimates above to 
derive asymptotic error estimates. We begin with the well-known progressive 
wave (Friedlander) expansion, valid for ((t - r)/r) < 1: 

(5.3.136) E fj(t - r , 0) 

where the functions fj(p, 0) are related by 

(5.3.137) 24' =-J>il(j-(1/2))2]1, j=1,2,.... 

It is worth noting that Friedlander [9] only proves the validity of the anal- 
ogous expansion in three space dimensions. Karp [20] directly analyzes the 
two-dimensional expansion in the frequency domain. See also [15] for a time- 
domain approach based on the Riemann function. 

All fj's are determined by the radiation field, fo. Expanding in a Fourier 
series in 0, fj = En fLn(p)ein6, and applying the boundary condition (3.0.56), 
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we obtain, using (5.3.137), 

(5.3.138) (Bu)n Bn r0(2j+)/2 0(r-)2 

This implies, if t = R + 0(1), that 

(5.3.139) n= O(R ). 

The short-time behavior of the error can then be extracted by mimicking the 
scaling arguments of [3]. This yields the following result: 

Theorem 7. For O < t < (R + T), T fixed, we have 

(5.3.140) Ilell,T = O(R-2), R -- oo. 

(Here, 11 - i ,11 is the space-time Sobolev norm involving derivatives up to order 
1 .) 

Estimates of the time-integral of the error can then be obtained using a 
Poincare inequality: 

R+T 

(5.3.141) j e2(r, 0, t)dt= O(lnr-R-4), R - oo, T fixed. 

The progressive wave expansion, however, breaks down as t -x oc. There- 
fore, to analyze the long-time behavior of the solution, we must use the long- 
time expansion of Muravei [25, ?5]. We decompose the solution u = uo + iu in 
the same way as we decomposed the error, and assume the data approaches its 
limit at least as fast as O(t-2). Then we have 

In 2tj ln3 t) (5.3.142) uo = uO,Oo( t 1+01 Xt?x 

(5.3.143) iu = o,(r, 6) + O(lnt t-2), t oC. 

Substituting these expressions into (3.0.56), we obtain 

( lnR 
(5.3.144) TO = 0 R2ln 3ti 

(5.3.145) e- ((t)) 

for the mean and, using the fact that + nUn, = 0, 

(5.3.146) P=0(ln t-3), T= 0(lnt t-3). 

We note that these are smooth functions, so that the estimates can be extended 
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to norms involving derivatives. Substituting these into the energy inequalities 
yields the following error estimates: 

Theorem 8. Suppose the conditions of Theorem 3 hold and that the data ap- 
proaches its t -+ oo limit at least as fast as O(t-2) . Then for some constant L 
independent of R, and T sufficiently large, we have 

(5.3.147) ('(T; K) <TL (RlnT) 

Proof. Substituting (5.3.145) into (5.1.103) and using the additional fact that 
= O(t-I In-4 t), we obtain (L is a generic R, T-independent constant) 

T2lIn 2R 
(5.3.148) < L 2 6 

(5.3.149) dt < LRln6 T 

(5.3.150) dt-- < L2ln 

Combining this inequality with Theorem 3 yields the desired result. o 

Lemma 7 can be used to estimate the pointwise error: 

Corollary 1. Suppose the hypotheses of Theorem 8 hold. Then 

In 3R ln r 
(5.3.151) ej(r, T) < L RIn6 T 

Remark. The computations were made with R too small to directly verify the 
dependence of the error on R. In particular, the function (In3 R)/R is not 
monotonically decreasing unless R is sufficiently large. Therefore, it is unlikely 
that this estimate displays the correct R behavior for small to moderate R. o 

Finally, combining Theorem 6 with (5.3.146), we see that e decays more 
rapidly in time: 

Theorem 9. As T x-+ o, there holds 

(5.3.152) j2(r, 6, T) < lnr O( TsT) 
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